Chapter 1 Introduction to Compiler Ageel Noori

Language Processors

a compiler is a program that can read a program in one language -
the source language - and translate it into an equivalent program in
another language - the target language.
An important role of the compiler is to report any errors in the source
program that it detects during the translation process.

source program

'

Compiler

'

target program

If the target program is an executable machine-language program, it can then be
called by the user to process inputs and produce outputs

input —» Target Program | output

An interpreter is another common kind of language processor. Instead of
producing a target program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user



Chapter 1 Introduction to Compiler Ageel Noori

source program —»
Interpreter output

input —

The machine-language target program produced by a compiler is usually
much faster than an interpreter at mapping inputs to outputs . An interpreter,
however, can usually give better error diagnostics than a compiler, because it
executes the source program statement by statement.

Some languages like Java the language processors combine compilation
and interpretation, A Java source program may first be compiled into an
intermediate form called bytecodes. The bytecodes are then interpreted by a virtual
machine. A benefit of this arrangement is that bytecodes compiled on one machine
can be interpreted on another machine, perhaps across a network.

source prograin

'

Translator
intermediate program —»- Virtual
Machs output
input —» hlachine




Chapter 1 Introduction to Compiler Ageel Noori

In order to achieve faster processing of inputs to outputs, some Java
compilers, called just-in-time compilers, translate the bytecodes into machine
language immediately before they run the intermediate program to process the
input.

The Structure of a Compiler

The compiler has two parts : analysis and synthesis. The analysis
part breaks up the source program into constituent pieces and imposes a
grammatical structure on them. It then uses this structure to create an intermediate
representation of the source program. If the analysis part detects that the source
program is either syntactically ill formed or semantically unsound, then it must
provide informative messages, so the user can take corrective action. The analysis
part also collects information about the source program and stores it in a data
structure called a symbol table, which is passed along with the intermediate
representation to the synthesis part.

The synthesis part constructs the desired target program from the
intermediate representation and the information in the symbol table. The analysis
part is often called the front end of the compiler; the synthesis part is the back end



Chapter 1 Introduction to Compiler Ageel Noori

character stream

'
Lexical Analyzer

|
token stream

|

Syntax Analyzer

synta:lc tree

Semantic Analyzer

I
syntax tree

1

Symbol Table Intermediate Code Generator

. l -
intermediate representation

Machine-Independent
Code Optimizer

\
intermediate representation

!

Code Generator

target-mac;:hinc code
Machine-Dependent
Code Optimizer

|
target-machine code

'



Chapter 1 Introduction to Compiler Ageel Noori

1- Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The
lexical analyzer reads the stream of characters making up the source program and
groups the characters into meaningful sequences called lexemes. For each lexeme,
the lexical analyzer produces as output a token of the form

<token-name, attribute-value>

token-name is an abstract symbol that is used during syntax analysis, and the
second component attribute-value points to an entry in the symbol table for this
token. Information from the symbol-table entry 'is needed
for semantic analysis and code generation.
For example, suppose a source program contains the assignment statement

position = initial + rate * 60

Blanks separating the lexemes would be discarded by the lexical analyzer.
The outputs of this phase for the above example 1is

<id, 1> <=> <id,2> <+> <id,3> <*> <60>

2- Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser
uses the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure of the
token stream. A typical representation is a syntax tree in which each interior node
represents an operation and the children of the node represent the arguments of the
operation.

VRO -0 P Ep® U 10 1L THE 10 WL EHEEC R H
#

— Y
/e " \
(id, 1) +
i (id, 2y > -
z (id, 3) 60
#



Chapter 1 Introduction to Compiler Ageel Noori

3- Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the
symbol table to check the source program for semantic consistency with the
language definition. It also gathers type information and saves it in either the
syntax tree or the symbol table, for subsequent use during intermediate-code
generation.

An important part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many
programming language definitions require an array index to be an integer; the
compiler must report an error if a floating-point number is used to index an array.
The language specification may permit some type conversions called coercions.
For example, a binary arithmetic operator may be applied to either a pair of
integers or to a pair of floating-point numbers. If the operator is applied to a
floating-point number and an integer, the compiler may convert or coerce the
integer into a floating-point number.

4- Intermediate Code Generation

In the process of translating a source program into target code, a compiler
may construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compilers
generate an explicit low-level or machine-like intermediate representation, which
we can think of as a program for an abstract machine.

This intermediate representation should have two important properties: it
should be easy to produce and it should be easy to translate into the target machine.

we consider an intermediate form called three-address code, which consists
of a sequence of assembly-like instructions with three operands per instruction.
Each operand can act like a register. The output of the intermediate
code generator for our example consists of the three-address code sequence

tl = inttofloat (60)

t2 =1d3 *tl
t3 =1d2 + 12
idl =t3

#

#

#



Chapter 1 Introduction to Compiler Ageel Noori

5- Code Optimization
The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means faster,
but other objectives may be desired, such as shorter code, or target code that
consumes less power.
so the inttofloat operation can be eliminated by replacing the integer 60 by
the floating-point number 60.0. Moreover, t3 is used only once to transmit its
value to idl so the optimizer can transform the above code into the shorter
sequence :
tl =1d3 * 60.0
id1 =1id2 +tl

6- Code Generation
The code generator takes as input an intermediate representation of the
source program and maps it into the target language. If the target language is
machine code, registers or memory locations are selected for each of the variables
used by the program. Then, the intermediate instructions are translated into
sequences of machine instructions that perform the same task. A crucial aspect of
code generation is the judicious assignment of registers to hold variables.
For example, using registers R1 and R2, the intermediate code in (1.4)
might get translated into the machine code
LDF R2, id3
MULF R2, R2 ,#60.0
LDFRI, id2
ADDFRI, RI, R2
STFidl, RI

The first operand of each instruction specifies a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in loads the
contents of address id3 into register R2, then multiplies it with floating-point
constant 60.0. The # signifies that 60.0 is to be treated as an immediate constant.
The third instruction moves 1d2 into register R1 and the fourth adds to it the value
previously computed in register R2. Finally, the value in register R1 is stored into
the address of 1 d 1, so the code correctly implements the assignment statement.



Chapter 1 Introduction to Compiler Ageel Noori

Symbol-Table Management

An essential function of a compiler is to record the variable names used in
the source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a name,
its type, its scope (where in the program its value may be used), and in the case of
procedure names, such things as the number and types of its arguments, the method
of passing each argument (for example, by value or by reference), and the type
returned.

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly

#

#
Lo 4ol cgSall malipll disads asly pals malin oo 3ke Compiler aa il

G g o) elaal a5 elacly o iy i (gl gl jll) 2ull ALE 5 588 I (adll el il )
el

Meﬂw\}dﬂiﬁé}g\ﬂﬁ\y‘&tﬂl‘@mky}\&}&ﬁlnterpreter J.ué.d\
sl e Jpanll 5 il il e g aaal zab ) ciladed 853 g sall Cllesll

The Structure of Compiler a> el J<a
P 5 J)shY) e de gana (e an il lly
Lexical Analyzer <) dal) Jolad jsh -1
ol galipll 45 Sall sa )l Jaas 361 8 aiila s Scanner gelalls Lyl ooy
Al pead Gl hae U 5 lexemes Sl tall ce X e 1Y Sl Leasead
s QU Jsall o588 Al s Tokens
< Token name , Attribute Value >
Aggadll ae ) all st gl & addiun 3 jae ey (e 3ke Token name
Jilad ol ol aadiiy o e ll Jsan 38l Jase Iyl Attribute value
B3l g sk 5 Al



Chapter 1 Introduction to Compiler Ageel Noori

Syntax Analyzer 4@l 3 g&l) Julas )k -2
LY Ol e Js¥) e all aladiuly ashy Sus Parser womallb Lay ey
A asadll Jiaill o) | 2l a8l gae ) @l S Gl Caaal (Al 58 el S sy Jii
Jic JukY) 5 operation ke Jidisaie S Cua Syntax tree <)V 5 sl
. Agleall 038 operands Slalas
Semantic Analyzer (sl Jilad jh -3
gl (Al 381 8 pandl 5ol Jgan Claglae g ae) sill 6 ad adiuy ) shall 13
a5l Jseol dsas (8 oA 5 Clasleall pan Liay) o gy 5 4alll oy jlad g Haadll
. Lgmdi ac ) 5
oaady sy Cus Type Checking gl s5Y) gasd ke o Hhll 3o 8 L )
Oe 058 O g A8 sieaddl s id operands Widlelae ae operator <lilasll (il 53
Lot Al lacal cang il g 5l (e Q1 Ll egsaiall & 53l
3 bVl Alaall o8 oxi § 4SS gigl 3 sear gl oY) Jisaty a ol Clalll (g
. Coercion ol _SY!
Intermediate Code Generation 4saw gl 5 A&l adgi )gh 4
s WS Three Address Code — cnsbiadl 4535 5,88 a5 oy skl a8
JS G wantll Al cilagety Al cilaleil) o il o CllE Cua Y s
- dia o) Sy dalae IS Bebae U L] dalas
sl AN 5y Clial g
ol dga (8 Y e saal s Aglee Ll il Aalai JS o
A sl aadll ) Al A 50 G e Al gy () g il @
5 Y Okl A LS EDE e B O3llas e (g iad Gladdadll (any e
C5,aY
Code Optimizing 4w gll 3 4dl) 4,85 -5
e i ) Jad) cona 388 Je Jgeaadl Apdas sl 3000 Cpaat b shall 8 3
(e pll &l yaaiall 5 Gibleall



Chapter 1 Introduction to Compiler Ageel Noori

Code Generation 5,840 algi jsh -6
5 SOl aladial o5 Cus Target Code  <agd) 3 adl) ad i oy ) glall s
CAIYVARD o Cangdl AR (Y geli Ll 8 83 gm sall il puaial) (5 308 ,SI Bl e
Symbol Table Jsad Jgaa
Clial ga Jiai Jsis 5 Sl ppsiall JS1 258 o (5 5iag (Sl JSb e 3 le
glasial 5 03A 5 (e ey palall adll Sy el Qi G| sl @l

e s 2l e il

10



